

Set of slides for the Factsheet Oncology

The impact of gender in oncology

Author(s): PD Dr med Alessandra Curioni-Fontecedro

Department of Medical Oncology and Hematology

Comprehensive Cancer Center Zurich

University Hospital Zurich

Cancer Incidence

C. Lopes-Ramos, Front Oncology 2020

Factors for disparities in incidence and mortality

- X Chromosome (tumor suppressor genes)
- Metabolism
- Drug Metabolism

Factors for disparities in incidence and mortality

Factors for disparities in incidence and mortality

X Chromosome (tumor suppressor genes)

Escape from X-inactivation tumor-suppressor (EXITS) genes

Factors for disparities in incidence and mortality

- X Chromosome (tumor suppressor genes)
- Metabolism

JCI Insights J Ippolito 2017: In glioma → Sexual dimorphism in pyruvate metabolism.

Joshua B. Rubin Biology of Sex Differences (2020)

Factors for disparities in incidence and mortality

- X Chromosome (tumor suppressor genes)
- Metabolism
- Drug Metabolism

Enrichment in males			Enrichment in females		
Pathway	NES	FDR	Pathway	NES	FDR
Acute myeloid leukemia	-2.207	0.000	Oxidative phosphorylation	2.637	0.000
Endometrial cancer	-2.230	0.000	Parkinson disease	2.485	0.000
Chronic myeloid leukemia	-2.157	0.001	Ribosome	2.287	0.000
Notch signaling pathway	-2.114	0.002	Alzheimer disease	1.957	0.003
Phosphatidylinositol signaling system	-2.062	0.002	Proteasome	1.968	0.004
Erbb signaling pathway	-2.006	0.002	Peroxisome	1.914	0.006
Pancreatic cancer	-2.012	0.003	Huntington disease	1.872	0.008
Focal adhesion	-2.018	0.003	Terpenoid backbone biosynthesis	1.807	0.015
Colorectal cancer	-2.026	0.003	Metabolism of xenobiotics by cytochrome p450	1.791	0.015
Prostate cancer	-1.962	0.003	Steroid hormone biosynthesis	1.761	0.018
Jak stat signaling pathway	-1.923	0.004	Protein export	1.734	0.021
Adherens junction	-1.914	0.004	Histidine metabolism	1.736	0.022
Arrhythmogenic right ventricular cardiomyopathy arvc	-1.917	0.004	Amyotrophic lateral sclerosis als	1.677	0.034
Fc gamma r mediated phagocytosis	-1.886	0.005	Drug metabolism cytochrome p450	1.648	0.041
Chemokine signaling pathway	-1.849	0.007	Tyrosine metabolism	1.590	0.064

Factors for disparities in lung cancer

Factors for disparities in colon cancer

Sex differences in colorectal cancer

male female

Clinical impact

targeting

(chemotherapy

in females

survival

Cancer-related genes: differences

Gene	Type of alteration	Prognostic value	Cancer	
RPL37A	expression	only in females	colon	
SRGAP1	expression	only in males	colon	
ACTL7B	expression	both sexes, but in opposite directions	colon	
TRRAP	expression	both sexes, but in opposite directions	colon	
LATS1	CNA and expression	only in females	kidney clear cell	
UBAC1	CNA and expression	only in females	kidney clear cell	
C16orf45	CNA and expression	only in females	kidney papillary cell	
LCMT1	CNA and expression	only in females	kidney papillary cell	
BRAF	mutation	only in males	colorectal	
BAP1	mutation	only in females	kidney clear cell	
TP53	mutation	only in females	colon	
miR-192, miR-206, miR-194, and miR-219	expression	only in females	colorectal	

Actionable genes in cancer: differences

Gene	Molecular alteration	Sex bias	Cancer	Drug	Therapy type
TOP2B methylation		female	BLCA	Valrubicin, Doxorubicin HCI liposome, Epirubicin	Chemotherapy (anthracyclines)
	mRNA	female	KIRP		
PDCD1	methylation	female	BLCA	Pembrolizumab, Nivolumab	Immunotherapy
	CNA	male	KIRC		
AR	protein	male	KIRC	Flutamide, Enzalutamide	Hormone therapy
CTNNB1	mutation	male	LIHC	Idelalisib	PI3K inhibitor
				Erlotinib	EGFR inhibitor
<i>EGFR</i>	mRNA	female	LUAD	Cetuximab, Erlotinib, Gefitinib, and Lapatinib	EGFR inhibitor
	methylation	female	BLCA		
NF1	mRNA	male	LUSC	Trametinib	MEK inhibitor
	mRNA	female	KIRP	Vemurafenib	RAF inhibitor
				Idelalisib	PI3K inhibitor
CDKN2A	mRNA	male	HNSC	Palbociclib	CDK inhibitor
	CNA	male	KIRC		
TSC2	methylation	female	KIRP	Everolimus, Temsirolimus	mTOR inhibitors
	methylation	female	KIRC		
BRCA1	methylation	female	HNSC	Olaparib	PARP inhibitor
	mRNA	female	KIRP	•	

Anticancer agents: differences in clearance

Class/drug, name	Indication	n (men)/ (women)	Variability on CL (CV%)	Relative change in women versus men	
Angiogenesis inhi	bitors				
Aflibercept [47]	Advanced solid	767/739	31%	Clfu Vfu	-16% -19%
	tumours				
Bevacizumab	Gastric cancer;	1101/949	26%	CL	−14% to −27%
[48, 49]	solid tumours				
Antineoplastic age	ents: antimetabolites				
5-Fluorouracil	GI malignancies;	74/42	22%–40%	CL CLmet	-14% to $-27%$ $-18%$
[50, 51] and	metastatic colo-				
metabolite	rectal cancer				
Myeloablative age	ents				
Busulfan [52]	Marrow	904/689	22%	V	+7%
	transplantation				
Antineoplastic age	ent: alkylating agents				
Temozolomide [53, 54]	Glioma, glioblast- oma, melanoma	303/177	5%–10%	CL	-19 to 27%
Mephalan [55]	Advanced	22/42	45%	CL	-19%
	malignancies				
Trabectedin [56]	PD study	232/467	51%	V Keo	-17% +22%
Antineoplastic age	ents: alkaloids				
Paclitaxel	Solid tumours	159/160		CL Vmax	-30% +14%
[57, 58]					
Irinotecan	Solid tumours,	67/58	47%	CL	-30% to 38%
(SN38)	glioblastoma				
[59–61]					
Antineoplastic age					
Rituximab [62]	Lymphoma	16/13	19%	CL	-21%

Immune responses to cancer: disparities

Immune responses to cancer: disparities

Immune responses to cancer: disparities

Conclusions and outlook

- Clear disparities between female and male patients with cancer in incidence and outcome
- Prospective studies with stratification based on gender are warranted

Set of slides for the Factsheet Oncology